Abstract
The inhibitory neurotransmitter glycine is known to enhance microglial nitric oxide production. However, up to now, the mechanism is undocumented. Since calcium is an important second messenger in both immune and glial cells, we studied the effects of glycine on intracellular calcium signaling. We found that millimolar concentrations of glycine enhance microglial intracellular calcium transients induced by 100μM ATP or by 500nM thapsigargin. This modulation was unaffected by the glycine receptor antagonist strychnine and could not be mimicked by glycine receptor agonists such as taurine or β-alanine, indicating glycine receptor independency. The modulation of calcium responses could be mimicked by several structurally related amino acids (e.g., serine, alanine, or glutamine) and was inhibited in the presence of the neutral amino acid transporter substrate α-aminoisobutyric acid (AIB). We correlated these findings to immunofluorescence glycine uptake experiments which showed a clear glycine uptake which was inhibited by AIB. Furthermore, all amino acids that were shown to modulate calcium responses also evoked AIB-sensitive inward currents, mainly carried by sodium, as demonstrated by patch clamp experiments. Based on these findings, we propose that sodium-coupled neutral amino acid transporters are responsible for the observed glycine modulation of intracellular calcium responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.