Abstract

Natural products with rare functional groups are likely to be constructed by unique biosynthetic enzymes. One such rare functional group is the O-methyl nitronate, which can undergo [3 + 2] cycloaddition reactions with olefins in mild conditions. O-methyl nitronates are found in some natural products; however, how such O-methyl nitronates are assembled biosynthetically is unknown. Here we show that the assembly of the O-methyl nitronate in the natural product enteromycin carboxamide occurs via activation of glycine on a peptidyl carrier protein, followed by reaction with a diiron oxygenase to give a nitronate intermediate and then with a methyltransferase to give an O-methyl nitronate. Guided by the discovery of this pathway, we then identify related cryptic biosynthetic gene cassettes in other bacteria and show that these alternative gene cassettes can, instead, facilitate oxidative denitrification of glycine-derived nitronates. Altogether, our work reveals bifurcating pathways from a central glycine-derived nitronate intermediate in bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.