Abstract

We have developed a novel laser-induced crystallization method utilizing local heat-induced bubble/water interface. Continuous laser beam of 1064 nm is focused on a gold nanoparticles thin film surface covered with glycine supersaturated aqueous solution. Light absorption of the film due to localized plasmon resonance caused local heating at the focal position and produced a single thermal vapor microbubble, which generated thermal gradient followed by convection flow around the bubble and eventually induced glycine crystallization and growth. The crystallization mechanism is discussed by considering gathering and accumulating molecules around the bubble/water interface assisted by convection flow and temperature jump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.