Abstract
The practical application of aqueous zinc ion batteries is restricted by dendrite growth and water-induced side reactions. Herein, a multifunctional anode-electrolyte interphase is constructed by introducing glycine electrolyte additive to solve the above problems simultaneously. Experimental results and theoretical calculations reveal that, due to the strong charge transfer between the amino group and Zn atoms, glycine preferentially adsorbs on the surface of Zn anode, which effectively prevents the direct contact between H2O and anode surface, thus inhibiting water-induced side reactions. Importantly, glycine exhibits higher electron transfer efficiency on Zn(002) than Zn(100) and Zn(101), which promotes glycine to have the strongest adsorption energy on Zn(002) plane, thus optimizing the diffusion and nucleation behavior of Zn2+ and inducing the final exposure of Zn(002) texture. Consequently, the Zn||Zn symmetric cell exhibits an extended service life of 3100 h at 1.0 mA cm−2, 1.0 mAh cm−2, and 1554 h at a high current density of 20 mA cm−2. Moreover, Zn||NH4V4O10 full cell shows 81.89% capacity retention after 7000 cycles at 5.0 A g−1. Through a unique molecular adsorption strategy, this work provides a new approach combining the interface optimization and induction of crystal plane towards highly reversible Zn anode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.