Abstract

Nineteen wheat genotypes were used to examine the effects of foliar applied glycine betaine (GB, 100 mM) on concentration of various osmolytes (such as proline, choline, GB and sucrose) under drought stress conditions. Drought stress caused a significant increase in proline content and GB content of wheat genotypes, both at maximum tillering and anthesis stages. Choline and sucrose were accumulated significantly at higher levels under stress conditions at both the stages. GB application increased the proline content and endogenous levels of GB in comparison to their stressed counterparts both at maximum tillering and anthesis stages but this increase was observed to be genotype specific. Furthermore, significant decrease in choline levels and sucrose contents of GB treated plants at anthesis stage and enhanced levels of proline questioned about involvement of GB in production of other osmolytes as well as stage specific response of wheat genotypes to GB spray. But these changes in osmolyte accumulation (OA) were not correlated with relative water content and stress tolerance index observed, under both GB sprayed and non-sprayed drought stressed conditions. So OA could not be considered as a selection criteria for drought tolerance in wheat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call