Abstract

The pathways of glycerol-3-phosphate (G3P) generation for glyceride synthesis were examined in precision-cut liver slices of fasted and diabetic rats. The incorporation of 5 mM [U-(14)C]glucose into glyceride-glycerol, used to evaluate G3P generation via glycolysis, was reduced by approximately 26-36% in liver slices of fasted and diabetic rats. The glycolytic flux was reduced by approximately 60% in both groups. The incorporation of 1.0 mM [2-(14)C]pyruvate into glyceride-glycerol (glyceroneogenesis) increased approximately 50% and approximately 36% in slices of fasted and diabetic rats, respectively, which also showed a two-fold increase in the activity phosphoenolpyruvate carboxykinase. The increased incorporation of 1.0 mM [2-(14)C]pyruvate into glyceride-glycerol by slices of fasted rats was not affected by the addition of 5 mM glucose to the incubation medium. The activity of glycerokinase and the incorporation of 1 mM [U-(14)C]glycerol into glyceride-glycerol, evaluators of G3P formation by direct glycerol phosphorylation, did not differ significantly from controls in slices of the two experimental groups. Rates of incorporation of 1 mM [2-(14)C]pyruvate and [U-(14)C]glycerol into glucose of incubation medium (gluconeogenesis) were approximately 140 and approximately 20% higher in fasted and diabetic slices than in control slices. It could be estimated that glyceroneogenesis by liver slices of fasted rats contributed with approximately 20% of G3P generated for glyceride-glycerol synthesis, the glycolytic pathway with approximately 5%, and direct phosphorylation of glycerol by glycerokinase with approximately 75%. Pyruvate contributed with 54% and glycerol with 46% of gluconeogenesis. The present data indicate that glyceroneogenesis has a significant participation in the generation of G3P needed for the increased glyceride-glycerol synthesis in liver during fasting and diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.