Abstract

Six glycerolphosphate-containing tetraheteroglycans, a, b-1, b-2, b-3, b-4, and b-5, have been purified from the formamide extracts of Streptococcus sanguis by alcohol and acetone precipitations, Sephadex G-75, and diethylaminoethyl-cellulose column chromatography. The polysaccharides were judged as at least 95% pure by analytical disc gel electrophoresis and immune double diffusion against rabbit antiserum. They were shown to be cell wall polysaccharides, since they formed a single band of identity in immune double diffusion with partially purified polysaccharide extracted from a purified cell wall preparation of S. sanguis. The polysaccharides were composed of l-rhamnose, d-glucose, and N-acetyl d-glucosamine in a similar molar ratio, but varied in their glycerol and phosphate contents. They exhibited four different mobilities in polyacrylamide disc gel electrophoresis at pH 8.9. When they were treated with formamide at 170 C for 20 min, the faster moving polysaccharide(s) yielded polysaccharides with mobilities corresponding to the other slower moving polysaccharides. These results indicate that the polysaccharides originated from the same cell wall polysaccharide and were produced as a result of breakage in the phosphodiester bonds during the formamide extraction procedure. A preliminary structural study shows that the terminal reducing sugar is l-rhamnose and that the glycerol moiety is probably linked to the polysaccharide through a phosphodiester bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.