Abstract

Rainbow smelt (Osmerus mordax) is a small fish that accumulates glycerol at low winter seawater temperatures. In laboratory-held fish, glycerol concentration typically reaches 225 mM in plasma and in all cells. Glycerol uptake by the heart and red blood cells (RBCs) was assessed by tracking [(14)C(U)]glycerol into the acid-soluble pool. In fish acclimated to 9-10°C a decrease in perfusion/incubation temperature from 8 to 1°C resulted in a decrease in glycerol uptake with a Q(10) of 3.2 in heart and 2.4 in RBCs. Acclimation to ∼1.5°C did not result in an adaptive enhancement of glycerol uptake as rates were unchanged in heart and RBCs. Glycerol uptake at 1°C was by passive diffusion in heart as evidenced by a linear relationship between glycerol uptake and extracellular glycerol concentration and a lack of inhibition by phloretin. In contrast, in RBCs, glycerol uptake with respect to glycerol concentration showed two linear relationships with a transition point around 50 mM extracellular glycerol. The slope of the second phase was much steeper and eliminated with the inclusion of phloretin. In RBCs from Atlantic salmon (Salmo salar), a related species that does not accumulate glycerol, glycerol uptake showed only a single linear curve and was not inhibited by phloretin. The data imply a strong facilitated component to glycerol uptake in rainbow smelt RBCs at high glycerol concentrations. We propose this is related to cyclic changes in RBC glycerol content involving a loss of glycerol at the gill and a reaccumulation during passage through the liver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call