Abstract

In our previous study, it was found that Aureobasidium melanogenum TN3-1 was a high pullulan producing and osmotic tolerant yeast-like fungal strain. In this study, the HOG1 signaling pathway controlling glycerol synthesis, glycerol, trehalose and vacuoles were found to be closely related to its pullulan biosynthesis and high osmotic tolerance. Therefore, deletion of the key genes for the HOG1 signaling pathway, glycerol and trehalose biosynthesis and vacuole formation made all the mutants reduce pullulan biosynthesis and increase sensitivity of the growth of the mutants to high glucose concentration. Especially, abolishment of both the VSP11 and VSP12 genes which controlled the fission/fusion balance of vacuoles could cause big reduction in pullulan production (less than 7.4 ± 0.4 g/L) by the double mutant ΔDV-5 and increased sensitivity to high concentration glucose, while expression of the VSP11 gene in the double mutant ΔDV-5 made the transformants EV-2 restore pullulan production and tolerance to high concentration glucose. But cell growth of them were the similar. The double mutant ΔDV-5 had much bigger vacuoles and less numbers of vacuoles than the transformant EV-2 and its wild type strain TN3-1 while it grew weakly on the plate with 40% (w/v) glucose while the transformant EV-2 and its wild type strain TN3-1 could grow normally on the plate even with 60% (w/v) glucose. The double mutant ΔDV-5 also had high level of pigment and its cells were swollen. This was the first time to give the evidence that glycerol, trehalose and vacuoles were closely related to pullulan biosynthesis and high osmotic tolerance by A. melanogenum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call