Abstract
Medium-chain fatty acids and their derivatives are natural ingredients that support immunological functions in animals. The effects of glycerol monolaurate (GML) on intestinal innate immunity and associated molecular mechanisms were investigated using a chicken embryo model. Sixty-four Arbor Acres broiler embryos were randomly allocated into four groups. On embryonic day 17.5, the broiler embryos were administered with 9 mg of GML, which was followed by a 12-h incubation period and a 12-h challenge with 32 μg of lipopolysaccharide (LPS). On embryonic day 18.5, the jejunum and ileum were harvested. Results indicated that GML reversed the LPS-induced decline in villus height and upregulated the expression of mucin 2 (P < 0.05). GML decreased LPS-induced malondialdehyde production and boosted antioxidant enzyme activity (P < 0.05). GML alleviated LPS-stimulated intestinal secretion of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) (P < 0.05). GML also normalized LPS-induced changes in the gene expression of Toll-like receptor 4, nuclear factor kappa-B p65 (NF-κB p65), cyclooxygenase-2, NOD-like receptor protein 3, IL-18, zonula occludens 1, and occludin (P < 0.05). GML enhanced as well the expression of AMP-activated protein kinase α1 and claudin 1 (P < 0.05). In conclusion, GML improved intestinal morphology and antioxidant status by alleviating inflammatory responses and modulating NF-κB signaling in LPS-challenged broiler embryos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.