Abstract

Glycerol utilization for phospholipid biosynthesis was examined in type II pneumocytes isolated from normal and streptozocinin-diabetic rats. With glucose in the incubation medium, incorporation of exogenous [1,3- 14C]glycerol into disaturated phosphatidylcholine, total phosphatidylcholine (PC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) was increased 4-fold in cells from diabetic rats. In the absence of glucose, glycerol incorporation was 5-fold greater than in its presence in cells from normal animals, but was further increased 2.2-fold in cells from diabetic rats. Insulin treatment of diabetic rats returned all incorporation rates to control values. The increased glycerol incorporation rates were not due to differences in either phospholipid turnover or the size of the glycerol 3-phosphate precursor pool. Kinetic analysis of glycerol entry into the acid-soluble cell fraction indicated that glycerol transport occurred largely by simple diffusion, and was not rate limiting for its entry into lipids. Glycerol entry into the total lipid fraction was saturable, reaching a V max of 48 pmol/μg DNA per h in normal cells and 120 pmol/μg DNA per h in cells from diabetic rats, with no change in the K m (0.31 mM). While glycerol oxidation was reduced 23% in cells from diabetic rats in the presence of glucose and by 44% in the absence of glucose, glycerol kinase activity in sonicates of cells from diabetic animals was increased 210% and was reversed by in vivo insulin treatment. These results suggest that glycerol utilization in type II pneumocytes is a hormonally regulated function of both glycerol oxidation and glycerol phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.