Abstract

Onion solid wastes (OSW) are a food side-stream with high polyphenolic load and distinguished polyphenolic profile. This study was conducted in order to explore a novel methodology of production of polyphenol-enriched extracts with antioxidant properties from OSW, using glycerol and green deep eutectic solvents (DES), composed of glycerol/citric acid and glycerol/sodium acetate. The organosolv process developed was appraised by establishing models based on severity, but also response surface methodology. Using a linear model, it was, for the first time, proposed that there is a direct correlation between the yield of the process in total polyphenols and the combined severity factor. Furthermore, response surface optimization enabled the establishment of linear models to predict the effects of time and temperature on the total polyphenol extraction yield. Out of the solvents tested, the DES composed of citric acid and glycerol was found to provide the highest yield in total polyphenols (87.90 ± 3.08 mg gallic acid equivalents per g dry mass) at significantly higher combined severity. However, the extraction efficiency of this solvent was virtually equal to that of the two other solvents tested. On the other hand, the polyphenolic composition of the extract obtained with the glycerol/citric acid DES was characterized by exceptionally high quercetin concentration. This extract also displayed the highest antioxidant activity. Based on the evidence emerged, it was proposed that OSW polyphenol extraction with the DES glycerol/citric acid could be used for production of extracts enriched in the bioactive flavonoid quercetin, with enhanced antioxidant activity. Moreover, using this green methodology, 27.59 ± 0.09 g of pure quercetin could be recovered out of 1 kg OSW. Thus, this methodology could be employed as a sustainable means of producing quercetin, through valorization of food wastes in a biorefinery context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.