Abstract

Continuous infusions of 2-[3H]glycerol and 1-[14C]palmitate were performed in vivo in rainbow trout to measure the effects of prolonged swimming on (1) the rate of appearance of glycerol (Ra glycerol or lipolytic rate), (2) the rate of appearance of non-esterified fatty acids (Ra NEFA) and (3) the rate of triacylglycerol:fatty acid cycling (TAG:FA cycling or re-esterification). Our goals were to test the hypothesis that sustained exercise for up to 4 days causes the progressive mobilization of triacylglycerol reserves to supply fuel to contracting muscles, and to assess whether TAG:FA cycling plays a role in the regulation of NEFA availability in teleosts. Contrary to expectation, the rates of lipolysis and fatty acid release in resting trout are not affected by endurance exercise. Unlike mammals, which increase the rate of lipolysis by two- to fourfold during submaximal exercise, these active teleosts do not mobilize triacylglycerol reserves beyond resting levels to supply more NEFAs to working muscles. Furthermore, they maintain Ra glycerol and Ra NEFA well in excess of oxidative fuel requirements even at rest. More than two-thirds of the NEFAs produced are re-esterified, but the results show that TAG:FA cycling is not involved in the regulation of NEFA availability during or after swimming. We propose that the observed high rates of re-esterification represent an important feature of ectothermic metabolism that allows the restructuring of membrane phospholipids to be synchronized with frequent changes in body temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.