Abstract

BackgroundThe presence of the branched Entner-Doudoroff (ED) pathway in two hyperthermophilic Crenarchaea, the anaerobe Thermoproteus tenax and the aerobe Sulfolobus solfataricus, was suggested. However, so far no enzymatic information of the non-phosphorylative ED branch and especially its key enzyme – glycerate kinase – was available. In the T. tenax genome, a gene homolog with similarity to putative hydroxypyruvate reductase/glycerate dehydrogenase and glycerate kinase was identified.ResultsThe encoding gene was expressed in E. coli in a recombinant form, the gene product purified and the glycerate kinase activity was confirmed by enzymatic studies. The enzyme was active as a monomer and catalyzed the ATP-dependent phosphorylation of D-glycerate forming exclusively 2-phosphoglycerate. The enzyme was specific for glycerate and highest activity was observed with ATP as phosphoryl donor and Mg2+ as divalent cation. ATP could be partially replaced by GTP, CTP, TTP and UTP. The enzyme showed high affinity for D-glycerate (Km 0.02 ± 0.01 mM, Vmax of 5.05 ± 0.52 U/mg protein) as well as ATP (Km of 0.03 ± 0.01 mM, Vmax of 4.41 ± 0.04 U/mg protein), although at higher glycerate concentrations, substrate inhibition was observed. Furthermore, the enzyme was inhibited by its product ADP via competitive inhibition. Data bank searches revealed that archaeal glycerate kinases are members of the MOFRL (multi-organism fragment with rich leucine) family, and homologs are found in all three domains of life.ConclusionA re-evaluation of available genome sequence information as well as biochemical and phylogenetic studies revealed the presence of the branched ED pathway as common route for sugar degradation in Archaea that utilize the ED pathway. Detailed analyses including phylogenetic studies demonstrate the presence of three distinct glycerate kinase classes in extant organisms that share no common origin. The affiliation of characterized glycerate kinases with the different enzyme classes as well as their physiological/cellular function reveals no association with particular pathways but a separate phylogenetic distribution. This work highlights the diversity and complexity of the central carbohydrate metabolism. The data also support a key function of the conversion of glycerate to 2- or 3-phosphoglycerate via glycerate kinase in funneling various substrates into the common EMP pathway for catabolic and anabolic purposes.

Highlights

  • The presence of the branched Entner-Doudoroff (ED) pathway in two hyperthermophilic Crenarchaea, the anaerobe Thermoproteus tenax and the aerobe Sulfolobus solfataricus, was suggested

  • A re-evaluation of available genome sequence information as well as biochemical and phylogenetic studies revealed the presence of the branched ED pathway as common route for sugar degradation in Archaea that utilize the ED pathway

  • Detailed analyses including phylogenetic studies demonstrate the presence of three distinct glycerate kinase classes in extant organisms that share no common origin

Read more

Summary

Introduction

The presence of the branched Entner-Doudoroff (ED) pathway in two hyperthermophilic Crenarchaea, the anaerobe Thermoproteus tenax and the aerobe Sulfolobus solfataricus, was suggested. A recent approach that combined comparative genomics and biochemistry identified the presence of the spED pathway – probably in addition to the npED pathway – in T. tenax and S. solfataricus, suggesting the presence of a branched ED pathway in these hyperthermophiles. The hyperthermophilic anaerobe Thermoproteus tenax grows optimally around 90°C, pH 5. This sulphur-dependent Creanarchaeon is able to grow chemolithoautotrophically on CO2 and H2, as well as chemoorganoheterotrophically in the presence of various organic compounds such as starch, glucose, malate and methanol [14,15]. T. tenax represents a perfect model organism for studying the complexity of the central carbohydrate metabolism as well as its regulation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.