Abstract

Metabolism of D-glyceraldehyde in human erythrocytes in comparison with that of glucose and dihydroxyacetone was studied. Both trioses were metabolized to produce L-lactate at rates comparable to that of L-lactate formation from glucose. Almost complete inactivation of glyceraldehyde-3-phosphate dehydrogenase by treatment of cells with iodoacetate resulted in a 95% decrease in L-lactate formation from the ketotriose as well as from glucose, whereas L-lactate formation from the aldotriose was only partially reduced (60%). D-Lactate was produced faster from either the aldotriose or the ketotriose than from glucose, but the ability of the two trioses to produce D-lactate was far lower than that to produce L-lactate. Almost complete inhibition of aldehyde dehydrogenase by disulfiram and of both aldose reductase and aldehyde reductase II by sorbinil, had no effect on L-lactate formation from D-glyceraldehyde. The present study suggests that D-glyceraldehyde is metabolized via two or more pathways including the glycolytic pathway after its phosphorylation by triokinase, and that neither oxidation to D-glyceric acid nor reduction to glycerol is a prerequisite for D-glyceraldehyde metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call