Abstract

The effects of increased GLUT4 (insulin-regulatable muscle/fat glucose transporter) expression on glucose homeostasis in a genetic model of non-insulin-dependent diabetes mellitus were determined by expressing a human GLUT4 transgene (hGLUT4) in diabetic C57BL/KsJ-db/db mice. A genomic hGLUT4 construct was microinjected directly into pronuclear murine embryos of db/+ matings to maintain the inbred background. Four lines of hGLUT4 transgenic mice were bred to homozygosity at the db locus and all showed a marked reduction of both fasted and fed plasma glucose levels (to approximately 50 and 360 mg/dl, respectively) compared with age-matched nontransgenic db/db mice (approximately 215 and 550 mg/dl, respectively), as well as an enhanced disposal of an oral glucose challenge. In situ immunocytochemical localization of GLUT4 protein in muscle from hGLUT4 db/db mice showed elevated plasma membrane-associated GLUT4 protein in the basal state, which markedly increased after an insulin/glucose injection. In contrast, nontransgenic db/db mice had low levels of plasma membrane-associated GLUT4 protein in the basal state with a relatively small increase after an insulin/glucose challenge. Since the intracellular GLUT4 levels in db/db mice were similar to nontransgenic db/+ mice, the glucose transport defect in db/db mice is at the level of glucose transporter translocation. Together, these data demonstrate that GLUT4 upregulation overcomes the glucose transporter translocation defect and alleviates insulin resistance in genetically diabetic mice, thus resulting in markedly improved glycemic control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.