Abstract

Glioblastoma (GBM) is a highly aggressive brain tumor that often utilizes aerobic glycolysis for energy production (Warburg effect), resulting in increased methylglyoxal (MGO) production. MGO, a reactive dicarbonyl compound, causes protein alterations and cellular dysfunction via glycation. In this study, we investigated the effect of glycation on sialylation, a common post-translational modification implicated in cancer. Our experiments using glioma cell lines, human astrocytes (hA), and primary glioma samples revealed different gene expressions of sialyltransferases among cells, highlighting the complexity of the system. Glycation has a differential effect on sialyltransferase expression, upregulating ST8SIA4 in the LN229 and U251 cell lines and decreasing the expression in normal hA. Subsequently, polysialylation increased in the LN229 and U251 cell lines and decreased in hA. This increase in polysialylation could lead to a more aggressive phenotype due to its involvement in cancer hallmark processes such as immune evasion, resistance to apoptosis, and enhancing invasion. Our findings provide insights into the mechanisms underlying GBM aggressiveness and suggest that targeting glycation and sialylation could be a potential therapeutic strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.