Abstract

Extracellular matrix glycation has been proposed to contribute to the arterial stiffness observed in aging and diabetes. We examined whether matrix protein glycation regulates the proleolytic process through the manipulation of matrix metalloproteinases (MMPs) activation, using collagen fibrils model. Vascular smooth muscle cells were cultured on control or glycated collagen fibrils. Matrix metalloproteinase-2 activation and the production of tissue inhibitors of metalloproteinase (TIMPs) were measured in the conditioned medium by using gelatin zymography and immunoblotting. Membrane type 1 matrix metalloproteinase (MT1-MMP) expression was also measured in cell lysates. When smooth muscle cells were cultured on collagen fibrils, pro-MMP-2 processing to active form was observed in the conditioned medium in coincidence with the increased MT1-MMP expression and the suppressed TIMP-2 production. Culturing smooth muscle cells on glycated collagen fibrils inhibited MMP-2 activation and attenuated MT1-MMP expression without the alteration of TIMP-2 production compared with control fibrils, indicating the possible mechanism of the suppression of MT1-MMP expression for the inhibition of MMP-2 activation on glycated collagen fibrils. Inclusion of aminoguanidine, an inhibitor of cross-linking formation, during collagen glycation restored the MMP-2 activation, suggesting the role of cross-links on the inhibition of MMP-2 activation. These observations suggest that glycation-induced cross-linking formation in interstitial collagen contributes to arterial stiffness in aging and diabetes through the manipulation of matrix metalloproteinase activation along with the reduction of the susceptibility to proteolytic enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.