Abstract

An understanding of how an antiviral monoclonal antibody recognizes its target is vital for the development of neutralizing antibodies and vaccines. The extensive glycosylation of viral proteins almost certainly affects the antibody response, but the investigation of such effects is hampered by the huge range of structures and interactions of surface glycans through their inherent complexity and flexibility. Here, we built an atomistic model of a fully glycosylated envelope protein complex of the Lassa virus and performed molecular dynamics simulations to characterize the impact of surface glycans on the antibody response. The simulations attested to the variety of conformations and interactions of surface glycans. The results show that glycosylation nonuniformly shields the surface of the complex and only marginally affects protein dynamics. The glycans gather in distinct clusters through interaction with protein residues, and only a few regions are left accessible by an antibody. We successfully recovered known protein epitopes by integrating the simulation results with existing sequence- and structure-based epitope prediction methods. The results emphasize the rich structural environment of glycans and demonstrate that shielding is not merely envelopment by a uniform blanket of sugars. This work provides a molecular basis for integrating otherwise elusive structural properties of glycans into vaccine and neutralizing antibody developments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.