Abstract

Heparan sulfate proteoglycans activate the matrix metalloproteinase-7 zymogen (proMMP-7) and recruit it in order to shed proteins from cell surfaces. This occurs in uterine and mammary epithelia, bacterial killing, lung healing, and tumor cell signaling. Basic tracks on proMMP-7 recognize polyanionic heparin, according to nuclear magnetic resonance and mutations disruptive of maturation. Contacts and proximity measurements guided docking of a heparin octasaccharide to proMMP-7. The reducing end fits into a basic pocket in the pro-domain while the chain continues toward the catalytic domain. Another oligosaccharide traverses a basic swath remote on the catalytic domain and inserts its reducing end into a slot formed with the basic C terminus. This latter association appears to support allosteric acceleration of proteolysis. The modes of binding account for extended, heterogeneous assemblies of proMMP-7 with heparinoids during maturation and for bridging to pro-α-defensins and proteoglycans. These associations support proteolytic release of activities at epithelial cell surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.