Abstract

Compared to the group I chaperonins, such as Escherichia coli GroEL, which facilitate protein folding, many aspects of the functional mechanism of archaeal group II chaperonins are unclear. Sequence homology between the chaperonin from Pyrococcus furiosus (PfCPN) and other group II chaperonins, together with the homo-oligomeric nature of PfCPN, suggest that PfCPN may serve as a model to clarify the role of the homologous position Gly-345 in the chaperonin-mediated protein folding. Here, we show that the purified chaperonin mutant in which the conserved residue Gly-345 is replaced by Asp (G345D) displays only about 25% ATP/ADP hydrolysis activities of the wild-type in the presence of Co(2+) and has a reduced capacity to promote folding of denatured malate dehydrogenase in vitro. This may be a reflection that Gly-345 plays an essential role in conformational change and protein refolding by archaeal group II chaperonins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.