Abstract

This study was conducted to determine the ability of additional ultrasound measures to enhance the prediction accuracy of retail product and trimmable fat yields based on weight and percentage. Thirty-two Hereford-sired steers were ultrasonically measured for 12th-rib fat thickness, longissimus muscle area, rump fat thickness, and gluteus medius depth immediately before slaughter. Chilled carcasses were evaluated for USDA yield grade factors and then fabricated into closely trimmed, boneless subprimals with 0.32 cm s.c. fat. The kilogram weight of end-point product included the weight of trimmed, boneless subprimals plus lean trim weights, chemically adjusted to 20% fat, whereas the fat included the weight of trimmed fat plus the weight of fat in the lean trim. Prediction equations for carcass yield end points were developed using live animal or carcass measurements, and live animal equations were developed including ultrasound ribeye area or using only linear measurements. Multiple regression equations, with and without ultrasound rump fat thickness and gluteus medius depth, had similar R2 values when predicting kilograms of product and percentages of product, suggesting that these alternative variables explained little additional variation. Final unshrunk weight and ultrasound 12th-rib fat thickness explained most of the variation when predicting kilograms of fat. Rump fat and gluteus medius depth accounted for an additional 10% of the variation in kilograms of fat, compared with the equation containing final weight, ultrasound ribeye area, and ultrasound 12th-rib fat thickness; however, the two equations were not significantly different. Prediction equations for the cutability end points had similar R2 values whether live animal ultrasound measurements or actual carcass measurements were used. However, when ultrasound ribeye area was excluded from live animal predictions, lower R2 values were obtained for kilograms of product (0.81 vs 0.67) and percentages of product (0.41 vs 0.17). Conversely, the exclusion of ultrasound ribeye area had little effect on the prediction accuracy for kilograms of fat (0.75 vs 0.74) and percentage fat (0.50 vs 0.40). These data substantiate the ability of live animal ultrasound measures to accurately assess beef carcass composition and suggest that the alternative ultrasound measures, rump fat and gluteus medius depth, improve the accuracy of predicting fat-based carcass yields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call