Abstract

Glutathione-dependent defense against xenobiotic toxicity is a multifaceted phenomenon that has been well characterized in mammals. This study undertakes a comparison of two benthic fish species, the channel catfish and brown bullhead, in terms of characteristics of the glutathione system. The channel catfish, a species that has seldom been observed to express pollutant-mediated neoplasia in field studies, was observed to have significantly higher constitutive levels of hepatic total glutathione and reduced glutathione (GSH). Brown bullhead, a species that is often observed to express neoplasia in contaminated systems, had significantly higher hepatic levels of glutathione disulfide. Furthermore, catfish expressed higher levels of activity of the enzymes gamma-glutamylcysteine synthetase (GCS), glutathione reductase (GR), and glutathione S-transferase, whereas bullhead expressed higher hepatic glutathione peroxidase (GPOX) activity. Both species responded to treatment with the redox active quinone, menadione, by expressing elevated hepatic content of total glutathione. However, the induction response was more rapid and more extensive in catfish compared to that in bullhead. This is attributable to the observed interspecific difference in GCS activity. Following treatment with the organic peroxide, tert-butyl hydroperoxide ( t-BOOH), bullhead hepatic glutathione was depleted up to 4 hr post-treatment, whereas catfish demonstrated no significant depletion of glutathione in response to t-BOOH. The differing responses to t-BOOH are attributable to interspecific differences in hepatic GPOX and GR activity. Bullhead, therefore, appear to be more susceptible to the effects of GSH arylators and oxidants based upon constitutive levels of glutathione, related enzyme activities, and the response of this system to model xenobiotics. The role of glutathione-dependent defense systems in determining species susceptibility to endpoints of xenobiotic toxicity, such as neoplasia, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.