Abstract

Analysis with radiotracer and high performance liquid chromatography techniques showed that glutathione (GSH) is transported intact into cells primarily of proximal tubule origin. Characteristics of GSH uptake were the same as previously reported for basal-lateral membrane vesicles, namely, uptake was Na+-dependent, inhibited by gamma-glutamylglutamate and/or probenecid, and not inhibited by cysteinylglycine or the constituent amino acids. Studies with inhibitors of gamma-glutamyltransferase (acivicin) and gamma-glutamylcysteine synthetase (buthionine sulfoximine) showed that GSH uptake, degradation and resynthesis are independent processes. The GSH uptake rate with 1 mM GSH was approximately three-fold greater than the GSH synthetic rate with 1 mM amino acids. To examine whether uptake of GSH can supplement synthesis to protect against injury, we incubated cells with a toxic concentration of t-butylhydroperoxide with or without GSH or its constituent amino acids. Although amino acids provided significant protection, GSH provided greater protection (cells with t-butylhydroperoxide plus GSH were not significantly different from cells alone). This protection by GSH was eliminated by gamma-glutamylglutamate or probenecid, indicating that GSH uptake was required for the protection seen. Protection was also eliminated when the GSSG reductase/GSH peroxidase system was inhibited by bischloronitrosourea (BCNU), indicating that GSH transport affords protection by maintaining GSH levels in the cell. Thus, intact GSH is transported into isolated proximal tubule cells by a Na+-dependent system, and this transported GSH can be used to supplement endogenous synthesis and GSSG reduction to protect cells against oxidative injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call