Abstract

Heterogeneous catalysis has emerged as a promising alternative for the development of new cancer therapies. In addition, regarding the tumor microenvironment as a reactor with very specific chemical features has provided a new perspective in the search for catalytic nanoarchitectures with specific action against chemical species playing a key role in tumor metabolism. One of these species is glutathione (GSH), whose depletion is the cornerstone of emerging strategies in oncology, since this metabolite plays a pivotal regulatory role as antioxidant agent, dampening the harmful effects of intracellular reactive oxidative species (ROS). Herein, we present copper-iron oxide spinel nanoparticles that exhibit a versatile and selective catalytic response to reduce GSH levels while generating ROS in a cascade reaction. We demonstrate a clear correlation between GSH depletion and apoptotic cell death in tumor cells in the presence of the copper-iron nanocatalyst. Furthermore, we also provide a novel analytical protocol, alternative to state-of-the-art commercial kits, to accurately monitoring the concentration of GSH intracellular levels in both tumor and healthy cells. We observe a selective action of the nanoparticles, with lower toxicity in healthy cell lines, whose intrinsic GSH levels are lower, and intense apoptosis in tumor cells accompanied by a fast reduction of GSH levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.