Abstract

We have created a novel glutathione S-transferase π1 (gstp1) knockout (KO) zebrafish model and used it for comparative analyses of redox homeostasis and response to drugs that cause endoplasmic reticulum (ER) stress and induce the unfolded protein response (UPR). Under basal conditions, gstp1 KO larvae had higher expression of antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) accompanied by a more reduced larval environment and a status consistent with reductive stress. Compared with wild type, various UPR markers were decreased in KO larvae, but treatment with drugs that induce ER stress caused greater toxicities and increased expression of Nrf2 and UPR markers in KO. Tunicamycin and 02-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl}1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/nitric oxide) activated inositol-requiring protein-1/X-box binding protein 1 pathways, whereas thapsigargin caused greater activation of protein kinase-like ER kinase/activating transcription factor 4/CHOP pathways. These results suggest that this teleost model is useful for predicting how GSTP regulates organismal management of oxidative/reductive stress and is a determinant of response to drug-induced ER stress and the UPR. SIGNIFICANCE STATEMENT: A new zebrafish model has been created to study the importance of glutathione S-transferase π1 in development, redox homeostasis, and response to drugs that enact cytotoxicity through endoplasmic reticulum stress and induction of the unfolded protein response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.