Abstract

Tetranychus urticae, a globally ubiquitous mite, poses a significant threat to agriculture. Elevated temperatures exacerbate the growth, development, and reproduction of T. urticae, leading to substantial crop damage. In this study, we employed comparative transcriptomic approaches with whole-genome information of T. urticae to identify six Glutathione S-transferase genes (GSTs) implicated in heat stress response. Through comprehensive bioinformatics analyses, we elucidated the tertiary structure and active sites of the corresponding proteins, providing a thorough characterization of these GST genes. Furthermore, we investigated the expression patterns of these six GST genes under short-term heat shock conditions. Our findings unveiled the involvement of T. urticae GST genes in combating oxidative stress induced by heat, underscoring their role in antioxidant defense mechanisms. This study contributes valuable insights into the molecular mechanisms underlying the response of T. urticae to heat stress, laying a foundation for the development of strategies aimed at mitigating its impact in high-temperature environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.