Abstract

Mercury (Hg) is toxic to plants, but the effect of glutathione in Hg alleviation was never studied in alfalfa, an important forage crop. In this study, Hg toxicity showed morphological retardation, chlorophyll reduction, and PSII inefficiency, which was restored due to GSH supplementation in alfalfa plants treated with Hg. Results showed a significant increase of Hg, but Fe and S concentrations substantially decreased in root and shoot accompanied by the downregulation of Fe (MsIRT1) and S (MsSultr1;2 and MsSultr1;3) transporters in roots of Hg-toxic alfalfa. However, GSH caused a significant decrease of Hg in the shoot, while the root Hg level substantially increased, accompanied by the restoration of Fe and S status, relative to Hg-stressed alfalfa. The subcellular analysis showed a substantial deposition of Hg in the root cell wall accompanied by the increased GSH and PC and the upregulation of MsPCS1 and MsGSH1 genes in roots. It suggests the involvement of GSH in triggering PC accumulation, causing excess Hg bound to the cell wall of the root, thereby reducing Hg translocation in alfalfa. Bioinformatics analysis showed that the MsPCS1 protein demonstrated one common conserved motif linked to the phytochelatin synthase domain (CL0125) with MtPCS1 and AtMCS1 homologs. These in silico analysis further confirmed the detoxification role of MsPCS1 induced by GSH in Hg-toxic alfalfa. Additionally, GSH induces GSH and GR activity to counteract oxidative injuries provoked by Hg-induced H2O2 and lipid peroxidation. These findings may provide valuable knowledge to popularize GSH-derived fertilizer or to develop Hg-free alfalfa or other forage plants.

Highlights

  • Mercury (Hg) toxicity is a severe threat to the plant, soil, and environment due to its bioaccumulation and biomagnification in different ecosystems [1]

  • Low levels of mercuric ion (Hg2+ ) do not significantly affect plant growth, but the excess Hg2+ causes many physiological disorders and growth retardation [6,7]. This is undoubtedly a concern for the forage crops as toxic Hg may pass through the animals to the human food chain

  • In silico analysis showed a close relation of the MsPCS1 protein with two model plants, sharing a common conserved motif and domain linked to phytochelatin synthesis

Read more

Summary

Introduction

Mercury (Hg) toxicity is a severe threat to the plant, soil, and environment due to its bioaccumulation and biomagnification in different ecosystems [1]. Hg may be present in the soil in various forms, among which plants can readily accumulate mercuric ion (Hg2+ ) from the soils [4]. Low levels of mercuric ion (Hg2+ ) do not significantly affect plant growth, but the excess Hg2+ causes many physiological disorders and growth retardation [6,7]. This is undoubtedly a concern for the forage crops as toxic Hg may pass through the animals to the human food chain. The Hg can adversely affect stomatal movement, water flow, mitochondrial activity, and photosynthesis in plants [8]

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.