Abstract

In the 5-lipoxygenase pathway for arachidonic acid metabolism, reduction of 5-hydroperoxyeicosatetraenoic acid (5-HPETE) to 5-hydroxyeicosatetraenoic acid (5-HETE) is catalyzed by an activity different from glutathione peroxidase. Glutathione peroxidase here refers to the nonspecific peroxidase that catalyzes the reduction by glutathione of cumeme hydroperoxide and a variety of other peroxides including 5-HPETE. This enzyme is inhibited by mercaptosuccinic acid. Preparations of the 15,000xg supernatant from lysed rat peritoneal polymorphonuclear leukocytes were the source of these activities. Thus, when glutathione peroxidase is inhibited to less than 0.5% of its normal activity by mercaptosuccinic acid, 5-HPETE is reduced as efficiently as in the absence of mercaptosuccinate. In lysate preparations from which endogenous glutathione has been removed, reduction of 5-HPETE is still observed but only in the presence of added reducing agents, e.g., 0.2 mM glutathione. When endogenous glutahione peroxidase is not inhibited, reduction of 5-HPETE occurs at a rate >15-fold faster than can be accounted for by this activity. We conclude, therefore, that the glutathione peroxidase in rat PMNs is not kinetically competent to account for reduction of 5-HPETE. There is a distinct peroxidase that catalyzes this reaction. The 5-HPETE peroxidase can utilize glutathione as reducing agent but is not inhibited by mercaptosuccinate, and additional results indicate that it is inactivated during turnover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.