Abstract
Glutathione peroxidase (GPx) protects cells from oxidative damage by catalyzing the reduction of both organic and hydrogen peroxides, using glutathione as a reducing agent. Both plasma GPx (P-GPx) and erythrocyte GPx (E-GPx) have been identified in human blood. Kidney proximal tubular cells are the main source of GPx activity in the plasma. Oxidative damage has been reported to participate in the progression and complications of renal diseases. The activities of both E-GPx and P-GPx were determined, using Randox commercial kits, in 12 patients with nephrotic syndrome (NS), 48 patients with renal impairment (RI), and 50 patients with chronic renal failure on maintenance hemodialysis (HD; before as well as immediately after dialysis), and in 50 healthy volunteers who served as controls. Compared to the results in healthy controls, P-GPx activity was reduced in the HD group and the RI group, whereas the NS group showed no significant difference from the control. The HD group showed a higher drop in P-GPx (reduced to 36.6% of the mean control value) than the RI group (reduced to 61.8% of the mean control value). Further analysis of the RI group showed a highly significant negative correlation between P-GPx activity and serum creatinine level (r = -0.691; P < 0.001). Also, a highly significant negative correlation was found between P-GPx and blood urea nitrogen (r = -0.792; P < 0.001). However, E-GPx activity showed no significant correlation with either serum creatinine or blood urea nitrogen. E-GPx was reduced to 55.2% and 68.9% of the mean control 1 value in the NS group and the RI group respectively, while the HD group showed no significant change. Further analysis of the RI group found that E-GPx activity showed no significant correlation with either serum creatinine or blood urea nitrogen. In HD patients, GPx activity was measured before and immediately after hemodialysis. E-GPx activity was similar before and after dialysis, without a significant difference (pre-dialysis, 37.7 +/- 13.5 U/g hemoglobin [Hb]; post-dialysis, 38.72 +/- 12.31 U/g Hb). However, P-GPx activity was significantly increased (pre-dialysis, 254.4 +/- 62.6 U/ml; post-dialysis, 296.98 +/- 74.04 U/ml; P < 0.001), but it was still significantly lower when compared to that in the healthy controls. P-GPx activity is an important test to assess the oxidative damage in patients with kidney diseases. The progression of renal disorders is accompanied by a decrease in P-GPx activity, but not by a decrease in E-GPx activity. Thus, we conclude that P-GPx activity largely depends on physiological renal function, whereas E-GPx activity does not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.