Abstract

Endogenous glycopeptides have been confirmed to play a significant role in multifarious pathological and physiological processes. The low abundance of endogenous glycopeptides and abundant interferents (e.g., large-size proteins and heteropeptides) in complex biological matrices render the direct analysis of endogenous glycopeptides difficult. Reported here is a novel glutathione-functionalized magnetic covalent organic framework microsphere (denoted as MCNC@COF@GSH) endowed with size-exclusion effect and strong hydrophilicity for selective and efficient enrichment of N-linked glycopeptides. The as-prepared MCNC@COF@GSH microspheres possessed fast magnetic responsiveness, regular porosity, large surface areas, and good hydrophilicity, resulting in remarkable performances in N-linked glycopeptide enrichment with low detection limit (0.01 fmol μL-1), high selectivity (1:5000, human immunoglobulin G (IgG) digests to bovine serum albumin digests), excellent size-exclusion effect (IgG digests/IgG/bovine serum albumin (BSA), 1:500:500), and reusability (at least five times). More excitingly, 143 endogenous N-linked glycopeptides were clearly identified from 10 μL sample of human saliva treated with the MCNC@COF@GSH microspheres, which is the unprecedented high efficiency in endogenous N-linked glycopeptide enrichment from human saliva. In addition to providing a strategy for versatile functionalization of magnetic covalent organic frameworks (COFs), this study may be used to develop application of endogenous glycoproteome analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call