Abstract

Silica based nanoparticles have emerged as a promising vaccine delivery system for cancer immunotherapy, but their bio-degradability, adjuvanticity and the resultant antitumor activity remain to be largely improved. In this study, we report biodegradable glutathione-depletion dendritic mesoporous organosilica nanoparticles (GDMON) with a tetrasulfide-incorporated framework as a novel co-delivery platform in cancer immunotherapy. Functionalized GDMON are capable of co-delivering an antigen protein (ovalbumin) and a toll-like receptor 9 (TLR9) agonist into antigen presenting cells (APCs) and inducing endosome escape. Moreover, decreasing the intracellular glutathione (GSH) level through the -S-S-/GSH redox chemistry increases the ROS generation level both in vitro and in vivo, facilitating cytotoxic T lymphocyte (CTL) proliferation and reducing tumour growth in an aggressive B16-OVA melanoma tumour model. Our results have shown the potential of GDMON as a novel self-adjuvant and co-delivery nanocarrier for cancer vaccine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.