Abstract

Although photothermal immunotherapy (PTI) is a compelling strategy for tumor therapy, the development of promising photothermal agents to overcome the insufficient immunogenicity of tumor cells and the poor immune response encountered in PTI is still challenging. Herein, commercial small-molecule-based organic metal adjuvants (OMAs) are presented, with second near-infrared photoacoustic and photothermal properties as well as the ability to perturb redox homeostasis to potentiate immunogenicity and immune responsiveness. OMAs, assembled from charge-transfer complexes and characterized by a broad substrate scope, high accessibility, and flexibly tuned optical properties, demonstrate strong phototherapeutic and adjuvant abilities via the depletion of glutathione and cysteine, and subsequently elicit systemic immunity by evoking immunogenic cell death, promoting dendritic cell maturation, and increasing T cell infiltration. Furthermore, programmed cell death protein 1 antibody can be employed to synergize with OMAs to suppress tumor immune evasion and ultimately improve the treatment outcomes. This study unlocks new paradigms to provide a versatile OMA-based scaffold for future practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.