Abstract

Alzheimer's disease is widely held to be associated with oxidative stress due, in part, to the action of amyloid beta-peptide (A beta). We observed that A beta 25-35 induced an increase in reactive oxygen species (ROS) in NT2 rho+ cells, leading to protein and lipid oxidation. This oxidative status was partially prevented by the antioxidants, vitamin E, reduced glutathione, and by melatonin. However, NT2 rho0 cells (that lack mitochondrial DNA) in the absence of A beta showed an increase in ROS production, lipid and protein oxidation, as compared with parental rho+ cells. Upon A beta 25-35 treatment, in rho+ cells, a decrease in glutathione reductase activity and in GSH levels was observed, whereas glutathione peroxidase activity was shown to be increased. In NT2 rho0 cells, in the absence of A beta, GSH levels were maintained, whereas glutathione reductase and peroxidase activities were increased. The exposure of A beta to rho0 cells did not induce any change in these parameters. We observed that melatonin prevented caspase activation and DNA fragmentation in rho+ cells treated with A beta. Considering the evidence presented, we argue that the glutathione cycle impairment is a key event in A beta-induced cell toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.