Abstract

Freshly isolated rat hepatocytes, which metabolize methionine through the cystathionine pathway, and cultured L5178Y cells, which do not, were compared for their response to the inhibition of S-adenosylhomocysteine (SAH) hydrolase (EC 3.3.1.1). When cells were incubated in Fischer's medium lacking cystine but containing 0.67 m m methionine and 10% serum, the addition of periodate-oxidized adenosine (POA), an inhibitor of SAH hydrolase, increased the level of SAH approximately 4-fold in L5178Y cells (5 m m POA) and 30-fold in hepatocytes (1 m m POA). POA treatment also decreased the amount of intracellular glutathione (GSH) in hepatocytes by 6-fold, and in L5178Y cells by 3-fold. Incubation of hepatocytes with adenosine plus homocysteine, 2-chloroadenosine, or 2′,3′-acyclic adenosine increased intracellular SAH and also lowered GSH levels. Neither GSH oxidation nor efflux of GSH or GSH conjugates appeared to account for the GSH loss. Intracellular GSH, covalently bound to proteins as mixed disulfides, increased when hepatocytes were incubated with POA, but the increase was insufficient to account for the total GSH loss. In hepatocytes with prelabeled [ 35S]GSH, POA caused the cellular GSH content to decrease while the specific activity of [ 35S]GSH remained constant, suggesting that inhibitor treatments that caused elevated SAH levels may have increased the degradation of GSH while GSH synthesis was inhibited.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call