Abstract

As a naturally hydrophilic peptide, glutathione was facilely immobilized onto silica surface to obtain a novel hydrophilic interaction/cation-exchange mixed-mode chromatographic stationary phase (Click TE-GSH) via copper-free “thiol-ene” click chemistry. The resulting material was characterized by solid state 13C/CP MAS NMR and elemental analysis. The measurement of ζ-potential indicated the cation-exchange characteristics and adjustable surface charge density of Click TE-GSH material. The influence of acetonitrile content and pH value on the retention of ionic compounds was investigated for understanding the chromatographic behaviors. The results demonstrated that Click TE-GSH column could provide both hydrophilic and cation-exchange interaction. Taking advantage of the good hydrophilicity and inherent cation-exchange characteristics of Click TE-GSH material, the resolution of neutral fructosan with high degree of polymerization (DP), basic chitooligosaccharides and strongly acidic carrageenan oligosaccharides was successfully realized in hydrophilic interaction chromatography (HILIC), hydrophilic interaction/cation-exchange mixed-mode chromatography (HILIC/CEX), cation-exchange chromatography (CEX) and electrostatic repulsion/hydrophilic interaction chromatography (ERLIC). On the other hand, the separation of standard peptides varying in hydrophobicity/hydrophilicity and charge was achieved in both CEX and HILIC/CEX mode with high efficiency and distinct selectivity. To further demonstrate the versatility and applicability of Click TE-GSH stationary phase, the separation of a human serum albumin (HSA) tryptic digest was performed in HILIC/CEX mode. Peptides were adequately resolved and up to 86 HSA peptides were identified with sequence coverage of 85%. The results indicated the good potential of Click TE-GSH material in glycomics and proteomics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.