Abstract

Breakdown of membrane phospholipids is a causative event leading to irreversible cell injury after ischemia and reperfusion insults, which might be one mechanism leading to liver tumor cell death after repeated arterial ischemia as well. After 2 hr of hepatic dearterialization followed by 30 min of reperfusion tumor phospholipid was measured chromatographically, glutathione (GSH) analyzed by determining nonprotein sulfhydryl and activity of glutathione-S-transferase (GST) determined spectrophotometrically using 1-chloro-2,4-dinitrobenzene (CDNB) as the substrate. A transient, arterial ischemia for 2 hr induced a substantial decrease of phosphatidylserine (PS) and phosphatidylinosital (PI) compared with sham treatment (P < 0.01). Although phosphatidylcholine (PC) and phosphatidylethanolamine (PE) did not significantly decline after a single arterial ischemia for 2 hr, they dropped dramatically following repeated arterial ischemia for 2 hr during 5 days (P < 0.01 and P < 0.05 respectively). GSH was depleted in tumors after both a single (P < 0.01) and repeated arterial ischemia (P < 0.05) and GST was inactivated as well (P < 0.001). By contrast, neither liver phospholipid nor liver GSH or GST was significantly changed. Tumor growth was significantly retarded in rats subjected to repeated arterial ischemia compared with sham treatment (P < 0.01). Repeated arterial ischemia facilitated degradation of tumor membrane phospholipids and induced depletion of GSH and inactivation of GST without affecting the normal liver. Thus, ischemia/reperfusion induced depletion of membrane phospholipids and of GSH might represent two mechanisms by which repeated arterial ischemia led to tumor growth delay. © 1996 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.