Abstract

Glutaric aciduria type 1 is an inborn error of lysine, hydroxylysine, and tryptophan metabolism caused by deficiency of glutaryl-coenzyme A dehydrogenase. The disease often appears in infancy with an encephalopathic episode that results in acute basal ganglia and white matter degeneration. The neuroimaging findings in glutaric aciduria type 1 have been well defined. However, the changes in magnetic resonance spectroscopy, a noninvasive tool for identifying the biochemical state of the brain, are scarce in glutaric aciduria type 1. This report presents the magnetic resonance spectroscopy findings in a 19-month-old male with glutaric aciduria type 1. Magnetic resonance spectroscopy of right frontal white matter and right lentiform nuclei revealed decreased N-acetylaspartate/creatine ratio, slightly increased choline/creatine ratio, and increased myoinositol/creatine ratio, compared with the age-matched control patients. We thought that these changes were in accordance with neuroaxonal damage, demyelination, and astrocytosis in these areas. In conclusion, proton magnetic resonance spectroscopy provides a tool for assessing metabolic disturbances and the extent of brain damage noninvasively in glutaric aciduria type 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.