Abstract

The primary and secondary structure of glutaredoxin-3 (Grx3), a glutathione-disulfide oxidoreductase from Escherichia coli, has been determined. The amino acid sequence of Grx3 consists of 82 residues and contains a redox-active motif, Cys-Pro-Tyr-Cys, typical of the glutaredoxin family. Sequence comparison reveals a homology (33% identity) to that of glutaredoxin-1 (Grx1) from E. coli as well as to other members of the thioredoxin superfamily. In addition to the active site cysteine residues, Grx3 contains one additional cysteine (Cys65) corresponding to one of the two non-active site (or structural) cysteine residues present in mammalian glutaredoxins. The sequence-specific 1H and 15N nuclear magnetic resonance assignments of reduced Grx3 have been obtained. From a combined analysis of chemical shifts, 3JHNalpha coupling constants, sequential and medium range NOEs, and amide proton exchange rates, the secondary structure of reduced Grx3 was determined and found to be very similar to that inferred from amino acid sequence comparison to homologous proteins. The consequences of the proposed structural similarity to Grx1 are that Grx3, while possessing a largely intact GSH binding cleft, would have a very different spatial distribution of charged residues, most notably surrounding the active site cysteine residues and occurring in the proposed hydrophobic protein-protein interaction area. These differences may contribute to the observed very low Kcat of Grx3 as a reductant of insulin disulfides or as a hydrogen donor for ribonucleotide reductase. Thus, despite an identical active site disulfide motif and a similar secondary structure and tertiary fold, Grx3 and Grx1 display large functional differences in in vitro protein disulfide oxido-reduction reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.