Abstract
It has been shown that the addition of a beta-adrenergic catecholamine to a trout red blood cell suspension induces a 60-100-fold increase of sodium permeability resulting from the activation of a cAMP-dependent Na+/H+ antiport. Subsequent addition of propranolol almost instantaneously reduces the intracellular cAMP concentration, and thus the Na permeability, to their basal values (Mahé et al., 1985). If glutaraldehyde (0.06-0.1%) is added when the Na+/H+ exchanger is activated after hormonal stimulation, addition of propranolol no longer inhibits Na permeability: once activated and fixed by glutaraldehyde, the cAMP dependence disappears. Glutaraldehyde alone causes a rapid decrease in the cellular cAMP concentration. In its fixed state the antiporter is fully amiloride sensitive. The switching on of the Na+/H+ exchange by cAMP is rapidly (2 min) followed by acute but progressive desensitization of the exchanger (Garcia-Romeu et al., 1988). The desensitization depends on the concentration of external sodium, being maximal at a normal Na concentration (145 mM) and nonexistent at a low Na concentration (20 mM). If glutaraldehyde is added after activation in nondesensitizing conditions (20 mM Na), transfer to a Na-rich medium induces only a very slight desensitization: thus the fixative can "freeze" the exchanger in the nondesensitizing conformation. NO3- inhibits the activity of the cAMP-dependent Na+/H+ antiporter of the trout red blood cell (Borgese et al., 1986). If glutaraldehyde is added when the cells are activated by cAMP in a chloride-containing medium, the activity of the exchanger is no longer inhibited when Cl- is replaced by NO3-. Conversely, after fixation in NO3- medium replacement of NO3- by Cl- has very little stimulatory effect. This indicates that the anion dependence is not a specific requirement for the exchange process but that the anion environment is critical for the switching on of the Na+/H+ exchanger and for the maintenance of its activated configuration.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.