Abstract
Magnetic chitosan nanocomposites (MCNCs) were synthesized by an inexpensive reduction precipitation technique using a glutaraldehyde cross-linking agent at room temperature. Successful chitosan coating of iron oxide nanoparticles was confirmed by X-ray photoemission spectroscopy. X-ray diffraction data revealed crystalline particle sizes for the iron oxide and MCNCs to be around 6–7 and 8–9nm, respectively. In addition, the MCNCs exhibited supermagnetic properties having magnetic saturation of 17.5emu/g. The synthesized MCNCs showed 91.60% absorption of Acid Red 2, while iron oxide 16.40% absorption; enhanced performance in MCNCs was resulted from presence of free amino and hydroxyl groups. Furthermore, the optimum pH and adsorbent concentration were 3 and 1.0g/L, respectively. The Redlich–Peterson isotherm fit experimental data better than Langmuir and Freundlich models, based on non-linear regression. Finally, MCNCs showed 96% American Dye Manufacturing Institute (ADMI) value removal and gave recovery efficiency of 100%, making them attractive for further practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.