Abstract

Glutaraldehyde is widely used as a cross-linking agent for enzyme immobilization onto microelectrodes. Recent studies and prior reports indicate changes in enzyme activity and selectivity with certain glutaraldehyde cross-linking procedures that may jeopardize the performance of microelectrode recordings and lead to falsely elevated responses in biological systems. In this study, the sensitivity of glutaraldehyde cross-linked glutamate oxidase-based microelectrode arrays to 22 amino acids was tested and compared to glutamate. As expected, responses to electroactive amino acids (Cys, Tyr, Trp) were detected at both nonenzyme-coated and enzyme-coated microelectrodes sites, while the remaining amino acids yielded no detectable responses. Electroactive amino acids were effectively blocked with a m-phenylene diamine (mPD) layer and, subsequently, no responses were detected. Preliminary results on the use of poly(ethylene glycol) diglycidyl ether (PEGDE) as a potentially more reliable cross-linking agent for the immobilization of glutamate oxidase onto ceramic-based microelectrode arrays are reported and show no significant advantages over glutaraldehyde as we observe comparable selectivities and responses. These results support that glutaraldehyde-cross-linked glutamate oxidase retains sufficient enzyme specificity for accurate in vivo brain measures of tonic and phasic glutamate levels when immobilized using specific "wet" coating procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call