Abstract

BackgroundBovine pericardium can be used for cardiovascular repair surgeries, but challenges involving biocompatibility and durability remain. This study aimed to carry out pre-clinical testing of aortic valve replacement using an aortic valve prosthesis made of bovine pericardium modified with glutaraldehyde (GA) and 2,3-butanediol (BD).MethodsThe mechanical, plasma protein adsorption, platelet adhesion, collagenase digestion, and ninhydrin properties of the material (control vs. GA vs. GA + BD) were tested. All 3 tissues were implanted in rats and observed after 8 weeks under microscopy with alizarin red staining for calcification. Aortic valves made from the fully-treated material were implanted in sheep. A commercial bioprosthesis was used as control. Effectiveness and safety indicators were observed at 180 days after implantation.ResultsCompared with the control group, the GA + BD material showed higher elongation at breaking and tensile load (both P<0.05), lower plasma protein adsorption, lower platelet adhesion, lower collagenase digestion, lower ninhydrin value, and higher cross-linking (all P<0.05). After implantation in rat models, the GA + BD material showed little or no dissolution; there was no obvious calcification; and it was surrounded by a small amount of fibrosis, with peripheral capillary proliferation. After implantation in sheep models, the aortic valve leaflets of the experimental animals freely opened and closed, their surface was smooth, and no abnormal echo was observed. The echocardiographic results and hemodynamic were comparable between the two groups. All safety parameters were normal.ConclusionsModification of bovine pericardium with GA and BD results in a biomaterial with favorable properties for use as an aortic valve prosthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call