Abstract

Ferroptosis is a non-apoptotic form of cell death driven by iron-dependent lipid peroxidation. Recent evidence indicates that inhibiting ferroptosis could alleviate cerebral ischemia/reperfusion (CIR) injury. γ-glutamylcysteine (γ-GC), an intermediate of glutathione (GSH) synthesis, can upregulate GSH in brains. GSH is the co-factor of glutathione peroxidase 4 (GPX4), which is the negative regulator of ferroptosis. In this study, we explored the effect of γ-GC on CIR-induced neuronal ferroptosis and brain injury. We found that γ-GC significantly reduced the volume of cerebral infarction, decreased the loss of neurons and alleviated neurological dysfunction induced by CIR in rats. Further observation showed that γ-GC inhibited the CIR-caused rupture of the neuronal mitochondrial outer membrane and the disappearance of cristae, and decreased Fe2+ deposition and lipid peroxidation in rat cerebral cortices. Meanwhile, γ-GC altered the expression of some ferroptosis-related proteins in rat brains. Mechanistically, γ-GC increased the expression of GSH synthetase (GSS) for GSH synthesis via protein kinase C (PKC)ε-mediated activation of nuclear factor erythroid 2-related factor (Nrf2). Our findings suggest that γ-GC not only serves as a raw material but also increases the GSS expression for GSH synthesis against CIR-induced lipid peroxidation and ferroptosis. Our study strongly suggests that γ-GC has potential for treating CIR injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call