Abstract

Microtubules are noncovalent polymers built from αβ-tubulin dimers. The disordered C-terminal tubulin tails are functionalized with multiple glutamate chains of variable lengths added and removed by tubulin tyrosine ligases (TTLLs) and carboxypeptidases (CCPs). Glutamylation is abundant on stable microtubule arrays such as in axonemes and axons, and its dysregulation leads to human pathologies. Despite this, the effects of glutamylation on intrinsic microtubule dynamics are unclear. Here we generate tubulin with short and long glutamate chains and show that glutamylation slows the rate of microtubule growth and increases catastrophes as a function of glutamylation levels. This implies that the higher stability of glutamylated microtubules in cells is due to effectors. Interestingly, EB1 is minimally affected by glutamylation and thus can report on the growth rates of both unmodified and glutamylated microtubules. Finally, we show that glutamate removal by CCP1 and 5 is synergistic and occurs preferentially on soluble tubulin, unlike TTLL enzymes that prefer microtubules. This substrate preference establishes an asymmetry whereby once the microtubule depolymerizes, the released tubulin is reset to a less-modified state, while polymerized tubulin accumulates the glutamylation mark. Our work shows that a modification on the disordered tubulin tails can directly affect microtubule dynamics and furthers our understanding of the mechanistic underpinnings of the tubulin code.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call