Abstract

BackgroundNonspecific orbital inflammation (NSOI) is an idiopathic, persistent, and proliferative inflammatory condition affecting the orbit, characterized by polymorphous lymphoid infiltration. Its pathogenesis and progression have been linked to imbalances in tumor metabolic pathways, with glutamine (Gln) metabolism emerging as a critical aspect in cancer. Metabolic reprogramming is known to influence clinical outcomes in various malignancies. However, comprehensive research on glutamine metabolism's significance in NSOI is lacking.MethodsThis study conducted a bioinformatics analysis to identify and validate potential glutamine-related molecules (GlnMgs) associated with NSOI. The discovery of GlnMgs involved the intersection of differential expression analysis with a set of 42 candidate GlnMgs. The biological functions and pathways of the identified GlnMgs were analyzed using GSEA and GSVA. Lasso regression and SVM-RFE methods identified hub genes and assessed the diagnostic efficacy of fourteen GlnMgs in NSOI. The correlation between hub GlnMgs and clinical characteristics was also examined. The expression levels of the fourteen GlnMgs were validated using datasets GSE58331 and GSE105149.ResultsFourteen GlnMgs related to NSOI were identified, including FTCD, CPS1, CTPS1, NAGS, DDAH2, PHGDH, GGT1, GCLM, GLUD1, ART4, AADAT, ASNSD1, SLC38A1, and GFPT2. Biological function analysis indicated their involvement in responses to extracellular stimulus, mitochondrial matrix, and lipid transport. The diagnostic performance of these GlnMgs in distinguishing NSOI showed promising results.ConclusionsThis study successfully identified fourteen GlnMgs associated with NSOI, providing insights into potential novel biomarkers for NSOI and avenues for monitoring disease progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call