Abstract

This study was designed to determine whether pyrroline-5-carboxylate (P-5-C) synthase is deficient in chick enterocytes therefore resulting in the lack of synthesis of ornithine and citrulline from glutamine. Post-weaning pig enterocytes, which are known to contain P-5-C synthase and to synthesize both ornithine and citrulline from glutamine, were used as positive controls. Enterocytes were incubated at 37 degrees C for 0-30 min in the presence of 2 mM [U-14C]glutamine or 2 mM ornithine plus 2 mM NH4Cl. In chick enterocytes, glutamine was metabolized to NH3, CO2, glutamate, alanine and aspartate, but not to ornithine, citrulline, arginine or proline. Likewise, there was no formation of citrulline, arginine, alanine or aspartate from ornithine in chick enterocytes. Furthermore, the rate of conversion of ornithine into proline in chick enterocytes was only about 4% of that in cells from pigs. To elucidate the reason for the inability of chick enterocytes to synthesize ornithine and citrulline from glutamine, the activities of the enzymes involved were measured. No activity of P-5-C synthase or ornithine carbamoyltransferase was found in chick enterocytes, in contrast with cells from post-weaning pigs. It was also demonstrated that the activity of ornithine aminotransferase in chick enterocytes was only 3% of that in cells from pigs. Thus the present findings elucidate the biochemical reason for the lack of endogenous synthesis of ornithine and citrulline in chicks. Our results also explain previous observations that ornithine cannot replace arginine or proline in the diet of chicks. We suggest that the absence of P-5-C synthase and ornithine carbamoyltransferase in enterocytes is the metabolic basis for the nutritional requirement of arginine in the chick.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.