Abstract

Glial glutamine and glutamate transporters play an important role in glial/neuronal interactions. An excellent model to establish the role of these membrane proteins is the cerebellum. The most abundant glutamatergic synapse in the central nervous system is present in the molecular layer of the cerebellar cortex, and it is entirely wrapped by Bergmann glial cells. The recycling of glutamate involves glutamate and glutamine transporters enriched in these radial glial processes. The functional properties of amino acid glial transporters allow, in an activity-dependent manner, the conformation of protein complexes important for the adequate support of glutamatergic neurotransmission. A detailed description of the most important features of glial glutamate and glutamine transporters follows, and a working model of the molecular mechanisms by which these glutamate and glutamine binding proteins interact, and by these means might modulate cerebellar glutamatergic transactions, is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.