Abstract

Glutamine-dependent NAD(+) synthetase, Qns1, utilizes a glutamine aminotransferase domain to supply ammonia for amidation of nicotinic acid adenine dinucleotide (NaAD(+)) to NAD(+). Earlier characterization of Qns1 suggested that glutamine consumption exceeds NAD(+) production by 40%. To explore whether Qns1 is systematically wasteful or whether additional features account for this behavior, we performed a careful kinetic and molecular genetic analysis. In fact, Qns1 possesses remarkable properties to reduce waste. The glutaminase active site is stimulated by NaAD(+) more than 50-fold such that glutamine is not appreciably consumed in the absence of NaAD(+). Glutamine consumption exceeds NAD(+) production over the whole range of glutamine and NaAD(+) substrate concentrations with greatest efficiency occurring at saturation of both substrates. Kinetic data coupled with site-directed mutagenesis of amino acids in the predicted ammonia channel indicate that NaAD(+) stimulates the glutaminase active site in the k(cat) term by a synergistic mechanism that does not require ammonia utilization by the NaAD(+) substrate. Six distinct classes of Qns1 mutants that fall within the glutaminase domain and the synthetase domain selectively inhibit components of the coordinated reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.