Abstract

Mice heterozygous for a mutation in the glutaminase (GLS1) gene (GLS1 HZ mice), with reduced glutamate recycling and release, display reduced hippocampal function as well as memory of contextual cues in a delay fear conditioning (FC) paradigm. Here, we asked whether this deficit reflects an inability to process contextual information or a selective alteration in salience attribution. In addition, we asked whether baseline and activity-induced hippocampal activity were diminished in GLS1 HZ mice. For this purpose, we manipulated the relative salience of the conditioned stimulus (CS) and contextual cues in FC tasks, and examined gene expression of the immediate early gene Arc (Arc/Arg3.1) in hippocampus and anterior cingulate cortex (ACC) following trace FC (tFC). The results indicate that GLS1 HZ mice succeed in processing contextual information when the salient CS is absent or less predictive. In addition, in the hippocampus-dependent tFC paradigm GLS1 HZ mice display enhanced CS learning. Furthermore, while baseline arc activation was reduced in GLS1 HZ mice in the hippocampus, in line with previous fMRI findings, it was enhanced in the hippocampus and anterior cingulate cortex following tFC. These findings suggest that GLS1 HZ mice have a pro-cognitive profile in the tFC paradigm, and this phenotype involves activation of both hippocampus and ACC.Taken together with previous work on the GLS1 HZ mouse, this study sheds light on the importance of glutamate transmission to memory processes that require the allocation of attentional resources, and extends our understanding of the underpinnings of attention deficits in SZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.